

The information in this document is provided as a guide only and is not professional advice,

including legal advice. It should not be assumed that the guidance is comprehensive or that it

provides a definitive answer in every case.

Customs & Excise

REST Web Service Integration Guide

© Revenue Commissioners Page 2 of 9

 Customs & Excise REST Web Service Integration Guide Version 0.2

Contents

Document References.. 3

1. Introduction ... 4

2. Digital Signatures ... 5

2.1 HTTP Signatures .. 5

2.1.1 HTTP Signature Sample 6

2.1.2 HTTP Signature Components 6

2.1.3 Signature String Construction 7

2.1.4 Signature Creation 8

Appendix A – Extracting from a .p12 File ... 9

© Revenue Commissioners Page 3 of 9

 Customs & Excise REST Web Service Integration Guide Version 0.2

Version Control
Version Date Change

0.1 04/10/2019 Initial document published

0.2 28/01/2022 Updated reference to AES

Document References

Reference

1. Web Services Specifications (incl. AES Operational January 2023 and AES)

2. Customs & Excise SOAP Web Service Integration Guide

3. Customs & Excise REST Web Service Integration Guide

© Revenue Commissioners Page 4 of 9

 Customs & Excise REST Web Service Integration Guide Version 0.2

1. Introduction
This document details the REST/XML web services specification provided by Revenue Customs and Excise

division.

The Documents Homepage specified in Document References is the home to all technical

documentation, specification, and examples for the above web services which has been made available

to enable software developers to update their software packages to be compatible with REST web

service specification.

Please note: The AIS and AES web services are made available via REST/XML and the request message

needs to be digitally signed as described in Digital Signatures section.

This document assumes familiarity with the REST web services. A full description of each of these can be

found in the “Web Services Specifications (incl. AES Operational January 2023 and AES)”document.

© Revenue Commissioners Page 5 of 9

 Customs & Excise REST Web Service Integration Guide Version 0.2

2. Digital Signatures
Any ROS web service request that either returns confidential information or accepts submission of

information must be digitally signed. This must be done using a digital certificate that has been

previously retrieved from ROS.

The digital signature must be applied to the message in accordance with the HTTP Signatures

specification.

The digital signature ensures the integrity of the document. By signing the document, we can ensure

that no malicious intruder has altered the document in any way. It can also be used for non-repudiation

purposes.

If a valid digital signature is not attached, a HTTP status code of 401 (Unauthorised) will be returned.

The message body will provide more information on the details of the problem.

2.1 HTTP Signatures

The HTTP signatures protocol is intended to provide a simple and standard way for clients to sign HTTP
requests. A summary of the structure of a HTTP Signature is outlined below. This is a simplified
explanation of the HTTP Signatures specification. The full specification can be found at Signing HTTP
Messages and should be read in full. The specification defines two approaches to building a HTTP
signature, “The 'Signature' HTTP Authentication Scheme” and “The 'Signature' HTTP Header”, Revenue
uses the latter.

At a high level, a HTTP Signature is a HTTP header that is added to a HTTP request. It is comprised of a
set of components that were used to generate a digital signature and the digital signature itself.

https://tools.ietf.org/html/draft-cavage-http-signatures-08
https://tools.ietf.org/html/draft-cavage-http-signatures-08
https://tools.ietf.org/html/draft-cavage-http-signatures-08#section-3
https://tools.ietf.org/html/draft-cavage-http-signatures-08#section-4

© Revenue Commissioners Page 6 of 9

 Customs & Excise REST Web Service Integration Guide Version 0.2

2.1.1 HTTP Signature Sample

Below is a sample HTTP Signature header.

Signature: keyId="MIICfzCCAeigAwIBAgIJ... // truncated",

 algorithm="rsa-sha512",

 headers="(request-target) host date digest",

 signature="GdUqDgy94Z8mSYUjr/rL6qrLX/jmudS... // truncated"

2.1.2 HTTP Signature Components

The Signature HTTP header contains four components, keyId, algorithm, headers and signature. Below

is a description of each.

keyId: The keyId field must contain a Base64 encoded version of the X509 certificate that accompanies

the private key used to sign the message. This field is required.

algorithm: The `algorithm` parameter is used to specify the digital signature algorithm to use when
generating the signature. Revenue expects this to be ‘rsa-sha512’. This field is required.

headers: The `headers` parameter specifies the list of headers used when generating the signature for
the message. The parameter must be a lowercased, quoted list of HTTP header fields, separated by a
single space character. The list order is important, and MUST be specified in the order the HTTP header
field-value pairs are concatenated together during signing.

signature: The signature component is a base 64 encoded digital signature. The implementer uses the
`algorithm` and `headers` field to form a canonicalized `signing string`. This `signing string` is then
signed with the private key that accompanies the X509 certificate associated with the `keyId` field and
the algorithm corresponding to the `algorithm` field. The `signature` field is then base 64 encoded.

© Revenue Commissioners Page 7 of 9

 Customs & Excise REST Web Service Integration Guide Version 0.2

2.1.3 Signature String Construction

In order to generate the string to be signed, the implementer MUST use the values of each HTTP header
defined in the `headers` signature field, to build the signature string. Values must be in the order they
appear in the `headers` signature field. If the associated HTTP header does not exist, it should be added
to the HTTP request BEFORE attempting to construct this string.

Allowable values in the headers field are outlined in the table below.

Value Mandatory

* (request-target) Yes

host Yes

date

Yes

** x-date Yes, if date header cannot be
added.

*** digest Yes, if HTTP method is of type
POST

content-type

No

content-length

No

x-http-method-override If HTTP method is of type
POST, HTTP header ‘X-HTTP-
Method-Override’ exists and
‘Content-Type=application/x-
www-form-urlencoded’. See
Section 2.1.1 for more detail.

* The `(request-target)` header field is a special header field in that its value is comprised of 2 HTTP
headers. It is generated by concatenating the lowercase HTTP method, an ASCII space, and the request
path headers.

** The ‘x-date’ headers field value should ONLY be used in conjunction with the X-Date HTTP header if a
Date HTTP header cannot be added to the HTTP request programmatically. The Date header has a
limitation when using JavaScript in a browser to build and send a HTTP signature. The limitation is that
you cannot add a ‘Date’ HTTP header when executing JavaScript in a browser. The native
XmlHttpRequest object prohibits addition of a ‘Date’ HTTP header. Building the signature string that will
be signed with an ‘x-date’ header instead of a ‘date’ header removes this restriction.

*** The ‘Digest’ HTTP header is created using the POST body/payload. The payload should be converted
to a byte array, hashed using the SHA-512 algorithm and finally base64 encoded before adding it as a
HTTP header.

© Revenue Commissioners Page 8 of 9

 Customs & Excise REST Web Service Integration Guide Version 0.2

All other header field values are created by concatenating the lowercase header field name followed by
an ASCII colon `:`, an ASCII space ` `, and the header field value. Leading and trailing whitespace in the
header field value MUST be omitted. If the header field is not the last value defined in the `headers`
signature field, then append an ASCII newline `\n`

2.1.4 Signature Creation

The signature component is a base 64 encoded digital signature. The implementer uses the `algorithm`
and constructed Signature String. The Signature String is signed with the private key that accompanies
the X509 certificate associated with the `keyId` field and the algorithm corresponding to the `algorithm`
field. The `signature` field is then base 64 encoded.

© Revenue Commissioners Page 9 of 9

 Customs & Excise REST Web Service Integration Guide Version 0.2

Appendix A – Extracting from a .p12 File

Each customer of ROS will have a digital certificate and private key stored in an industry standard

PKCS#12 file.

In order to create a digital signature, the private key of the customer must be accessed. A password is

required to retrieve the private key from the P12 file. This password can be obtained by prompting the

user for their password.

The password on the P12 is not the same as the password entered by the customer. It is in fact the MD5

hash of that password, followed by the Base64-encoding of the resultant bytes.

To calculate the hashed password, follow these steps:

1. First get the bytes of the original password, assuming a "Latin-1" encoding. For the password
"Password123", these bytes are: 80 97 115 115 119 111 114 100 49 50 51(i.e. the value of "P" is
80, "a" is 97, etc.).

2. Then get the MD5 hash of these bytes. MD5 is a standard, public algorithm. Once again, for the
password "Password123" these bytes work out as: 66 -9 73 -83 -25 -7 -31 -107 -65 71 95 55 -92
76 -81 -53.

3. Finally, create the new password by Base64-encoding the bytes from the previous step. For
example, the password, "Password123" this is “QvdJref54ZW/R183pEyvyw==”.

This new password can then be used to open a standard ROS P12 file.

